Ahmadlou,, M., Adeli,, H., & Adeli,, A. (2010). New diagnostic EEG markers of the Alzheimer`s disease using visibility graph. Journal of Neural Transmission, 117(9), 1099–1109.

Albert,, R., & Barabási,, A.‐L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.

Amigó,, J. M., Zambrano,, S., & Sanjuán,, M. A. (2007). True and false forbidden patterns in deterministic and random dynamics. EPL (Europhysics Letters), 79(5), 50001.

An,, P., Si,, W., Ding,, S., Xue,, G., & Yuan,, Z. (2019). *A Novel EEG Sleep Staging Method for Wearable Devices Based on Amplitude‐time Mapping*. 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 124–129. https://doi.org/10.1109/ICARM.2019.8833661

Baggio,, R., & Sainaghi,, R. (2016). Mapping time series into networks as a tool to assess the complex dynamics of tourism systems. Tourism Management, 54, 23–33.

Barabási,, A.‐L. (2016). Network science. Cambridge, England: Cambridge University Press.

Barabási,, A.‐L., & Albert,, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

Barigozzi,, M., & Brownlees,, C. (2019). Nets: Network estimation for time series. Journal of Applied Econometrics, 34(3), 347–364.

Barigozzi,, M., & Hallin,, M. (2016). Generalized dynamic factor models and volatilities: Recovering the market volatility shocks. The Econometrics Journal, 19(1), C33–C60.

Barigozzi,, M., & Hallin,, M. (2017). A network analysis of the volatility of high dimensional financial series. Journal of the Royal Statistical Society: Series C (Applied Statistics), 66(3), 581–605.

Bezsudnov,, I., & Snarskii,, A. (2014). From the time series to the complex networks: The parametric natural visibility graph. Physica A: Statistical Mechanics and its Applications, 414, 53–60.

Bianchi,, F. M., Livi,, L., Alippi,, C., & Jenssen,, R. (2017). Multiplex visibility graphs to investigate recurrent neural network dynamics. Scientific Reports, 7, 44037.

Boccaletti,, S., Bianconi,, G., Criado,, R., Del Genio,, C. I., Gómez‐Gardenes,, J., Romance,, M., … Zanin,, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.

Bonanno,, G., Caldarelli,, G., Lillo,, F., Micciche,, S., Vandewalle,, N., & Mantegna,, R. N. (2004). Networks of equities in financial markets. The European Physical Journal B, 38(2), 363–371.

Box,, G. E., Jenkins,, G. M., Reinsel,, G. C., & Ljung,, G. M. (2015). Time series analysis: Forecasting and control. Hoboken, NJ: John Wiley %26 Sons.

Bradley,, E., & Kantz,, H. (2015). Nonlinear time‐series analysis revisited. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(9), 097610.

Bullmore,, E., & Sporns,, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

Cai,, S.‐M., Zhou,, Y.‐B., Zhou,, T., & Zhou,, P.‐L. (2010). Hierarchical organization and disassortative mixing of correlation‐based weighted financial networks. International Journal of Modern Physics C, 21(03), 433–441.

Campanharo,, A., Andriana,, S.L.O., & Ramos,, F.M. (2016). *Quantile Graphs for the Characterization of Chaotic Dynamics in Time Series*. WCCS 2015 – IEEE Third World Conference on Complex Systems, IEEE. https://doi.org/10.1109/ICoCS.2015.7483302

Campanharo,, A. S., Doescher,, E., & Ramos,, F. M. (2018). Application of quantile graphs to the automated analysis of EEG signals. Neural Processing Letters, 52, 5–20.

Campanharo,, A. S., & Ramos,, F. M. (2016). Hurst exponent estimation of self‐affine time series using quantile graphs. Physica A: Statistical Mechanics and its Applications, 444, 43–48.

Campanharo,, A. S., Sirer,, M. I., Malmgren,, R. D., Ramos,, F. M., & Amaral,, L. A. N. (2011). Duality between time series and networks. PLoS One, 6(8), e23378.

Cao,, Y., Tung,, W.‐W., Gao,, J., Protopopescu,, V. A., & Hively,, L. M. (2004). Detecting dynamical changes in time series using the permutation entropy. Physical Review E, 70(4), 046217.

Charakopoulos,, A., Karakasidis,, T., Papanicolaou,, P., & Liakopoulos,, A. (2014). The application of complex network time series analysis in turbulent heated jets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(2), 024408.

Costa,, L. d. F., Oliveira,, O. N., Jr., Travieso,, G., Rodrigues,, F. A., Villas Boas,, P. R., Antiqueira,, L., … Correa Rocha,, L. E. (2011). Analyzing and modeling real‐world phenomena with complex networks: A survey of applications. Advances in Physics, 60(3), 329–412.

Costa,, L. d. F., Rodrigues,, F. A., Travieso,, G., & Villas Boas,, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.

Diebold,, F. X., & Yılmaz,, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134.

Dijkstra,, H. A., Hernández‐García,, E., Masoller,, C., & Barreiro,, M. (2019). Networks in climate. Cambridge, England: Cambridge University Press.

Donges,, J. F., Donner,, R. V., & Kurths,, J. (2013). Testing time series irreversibility using complex network methods. EPL (Europhysics Letters), 102(1), 10004.

Donges,, J. F., Donner,, R. V., Rehfeld,, K., Marwan,, N., Trauth,, M. H., & Kurths,, J. (2011). Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis. Nonlinear Processes in Geophysics, 18(5), 545–562.

Donges,, J. F., Heitzig,, J., Donner,, R. V., & Kurths,, J. (2012). Analytical framework for recurrence network analysis of time series. Physical Review E, 85(4), 046105.

Donges,, J. F., Schultz,, H. C., Marwan,, N., Zou,, Y., & Kurths,, J. (2011). Investigating the topology of interacting networks. The European Physical Journal B, 84(4), 635–651.

Donner,, R. V., & Donges,, J. F. (2012). Visibility graph analysis of geophysical time series: Potentials and possible pitfalls. Acta Geophysica, 60(3), 589–623.

Donner,, R. V., Donges,, J. F., Zou,, Y., & Feldhoff,, J. H. (2015). Complex network analysis of recurrences. In Recurrence Quantification Analysis (pp. 101–163). Cham: Springer International Publishing.

Donner,, R. V., Heitzig,, J., Donges,, J. F., Zou,, Y., Marwan,, N., & Kurths,, J. (2011). The geometry of chaotic dynamics—A complex network perspective. The European Physical Journal B, 84(4), 653–672.

Donner,, R. V., Small,, M., Donges,, J. F., Marwan,, N., Zou,, Y., Xiang,, R., & Kurths,, J. (2011). Recurrence‐based time series analysis by means of complex network methods. International Journal of Bifurcation and Chaos, 21(04), 1019–1046.

Donner,, R. V., Zou,, Y., Donges,, J. F., Marwan,, N., & Kurths,, J. (2010). Recurrence networks — A novel paradigm for nonlinear time series analysis. New Journal of Physics, 12(3), 033025.

Douc,, R., Moulines,, E., & Stoffer,, D. (2014). Nonlinear time series: Theory, methods and applications with R examples (1st ed.). Boca Raton, FL: Chapman and Hall/CRC.

Eckmann,, J., Kamphorst,, S. O., & Ruelle,, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters (EPL), 4(9), 973–977.

Eguiluz,, V. M., Chialvo,, D. R., Cecchi,, G. A., Baliki,, M., & Apkarian,, A. V. (2005). Scale‐free brain functional networks. Physical Review Letters, 94(1), 018102.

Elsner,, J., Jagger,, T., & Fogarty,, E. (2009). Visibility network of United States hurricanes. Geophysical Research Letters, 36(16), L16702.

Epskamp,, S., & Fried,, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617–634.

Erdős,, P. & Rényi,, A. (1960). On the evolution of random graphs. *Publication of the mathematical institute of the hungarian academy of sciences* (Vol. 5, pp. 17–60). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.348.530%26rep=rep1%26type=pdf

Eroglu,, D., Marwan,, N., Stebich,, M., & Kurths,, J. (2018). Multiplex recurrence networks. Physical Review E, 97(1), 012312.

Feldhoff,, J., Donner,, R. V., Donges,, J. F., Marwan,, N., & Kurths,, J. (2013). Geometric signature of complex synchronisation scenarios. EPL (Europhysics Letters), 102(3), 30007.

Feldhoff,, J. H., Donner,, R. V., Donges,, J. F., Marwan,, N., & Kurths,, J. (2012). Geometric detection of coupling directions by means of inter‐system recurrence networks. Physics Letters A, 376(46), 3504–3513.

Feng,, C., & He,, B. (2017). Construction of complex networks from time series based on the cross correlation interval. Open Physics, 15(1), 253–260.

Flanagan,, R., Lacasa,, L., & Nicosia,, V. (2019). On the spectral properties of Feigenbaum graphs. Journal of Physics A: Mathematical and Theoretical, 53(2), 025702.

Fukino,, M., Hirata,, Y., & Aihara,, K. (2016). Coarse‐graining time series data: Recurrence plot of recurrence plots and its application for music. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(2), 023116.

Gao,, Y.‐C., Zeng,, Y., & Cai,, S.‐M. (2015). Influence network in the chinese stock market. Journal of Statistical Mechanics: Theory and Experiment, 2015(3), P03017.

Gao,, Z., & Jin,, N. (2009). Complex network from time series based on phase space reconstruction. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(3), 033137.

Gao,, Z.‐K., Cai,, Q., Yang,, Y.‐X., Dang,, W.‐D., & Zhang,, S.‐S. (2016). Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series. Scientific Reports, 6(1), 35622.

Gao,, Z.‐K., Guo,, W., Cai,, Q., Ma,, C., Zhang,, Y.‐B., & Kurths,, J. (2019). Characterization of ssmvep‐based EEG signals using multiplex limited penetrable horizontal visibility graph. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(7), 073119.

Gao,, Z.‐K., Li,, Y.‐L., Yang,, Y.‐X., & Ma,, C. (2019). A recurrence network‐based convolutional neural network for fatigue driving detection from EEG. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(11), 113126.

Gao,, Z.‐K., Yang,, Y.‐X., Cai,, Q., Zhang,, S.‐S., & Jin,, N.‐D. (2016). Multivariate weighted recurrence network inference for uncovering oil‐water transitional flow behavior in a vertical pipe. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 063117.

Gao,, Z.‐K., Zhang,, X.‐W., Jin,, N.‐D., Marwan,, N., & Kurths,, J. (2013). Multivariate recurrence network analysis for characterizing horizontal oil‐water two‐phase flow. Physical Review E, 88(3), 032910.

Ghosh,, S. K. (2007). Visibility algorithms in the plane. Cambridge, England: Cambridge University Press.

Guo,, H., Zhang,, J.‐Y., Zou,, Y., & Guan,, S.‐G. (2018). Cross and joint ordinal partition transition networks for multivariate time series analysis. Frontiers of Physics, 13(5), 130508.

Gutin,, G., Mansour,, T., & Severini,, S. (2011). A characterization of horizontal visibility graphs and combinatorics on words. Physica A: Statistical Mechanics and its Applications, 390(12), 2421–2428.

Holme,, P., & Saramäki,, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.

Hou,, F., Li,, F., Wang,, J., & Yan,, F. (2016). Visibility graph analysis of very short‐term heart rate variability during sleep. Physica A: Statistical Mechanics and its Applications, 458, 140–145.

Iacovacci,, J., & Lacasa,, L. (2016a). Sequential motif profile of natural visibility graphs. Physical Review E, 94(5), 052309.

Iacovacci,, J., & Lacasa,, L. (2016b). Sequential visibility‐graph motifs. Physical Review E, 93(4), 042309.

Iwayama,, K., Hirata,, Y., Suzuki,, H., & Aihara,, K. (2013). Change‐point detection with recurrence networks. Nonlinear Theory and its Applications, IEICE, 4(2), 160–171.

Jacob,, R., Harikrishnan,, K., Misra,, R., & Ambika,, G. (2016). Can recurrence networks show small‐world property? Physics Letters A, 380(35), 2718–2723.

Jacob,, R., Harikrishnan,, K., Misra,, R., & Ambika,, G. (2019). Weighted recurrence networks for the analysis of time‐series data. Proceedings of the Royal Society A, 475(2221), 20180256.

Kang,, Y., Hyndman,, R. J., & Smith‐Miles,, K. (2017). Visualising forecasting algorithm performance using time series instance spaces. International Journal of Forecasting, 33(2), 345–358.

Kaur,, M., & Singh,, S. (2016). Analyzing negative ties in social networks: A survey. Egyptian Informatics Journal, 17(1), 21–43.

Kiel,, L. D., & Elliott,, E. W. (1996). Chaos theory in the social sciences: Foundations and applications. United States: University of Michigan Press.

Kivelä,, M., Arenas,, A., Barthelemy,, M., Gleeson,, J. P., Moreno,, Y., & Porter,, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271.

Kretschmer,, M., Coumou,, D., Donges,, J. F., & Runge,, J. (2016). Using causal effect networks to analyze different arctic drivers of midlatitude winter circulation. Journal of Climate, 29(11), 4069–4081.

Kulp,, C. W., Chobot,, J. M., Freitas,, H. R., & Sprechini,, G. D. (2016). Using ordinal partition transition networks to analyze ECG data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(7), 073114.

Lacasa,, L., Luque,, B., Ballesteros,, F., Luque,, J., & Nuno,, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972–4975.

Lacasa,, L., Luque,, B., Luque,, J., & Nuno,, J. C. (2009). The visibility graph: A new method for estimating the Hurst exponent of fractional brownian motion. EPL (Europhysics Letters), 86(3), 30001.

Lacasa,, L., Nicosia,, V., & Latora,, V. (2015). Network structure of multivariate time series. Scientific Reports, 5(1), 15508.

Lacasa,, L., Nunez,, A., Roldán,, É., Parrondo,, J. M., & Luque,, B. (2012). Time series irreversibility: A visibility graph approach. The European Physical Journal B, 85(6), 217.

Lacasa,, L., & Toral,, R. (2010). Description of stochastic and chaotic series using visibility graphs. Physical Review E, 82(3), 036120.

Lan,, X., Mo,, H., Chen,, S., Liu,, Q., & Deng,, Y. (2015). Fast transformation from time series to visibility graphs. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(8), 083105.

Lanne,, M., & Nyberg,, H. (2016). Generalized forecast error variance decomposition for linear and nonlinear multivariate models. Oxford Bulletin of Economics and Statistics, 78(4), 595–603.

Li,, D., Lin,, J., Bissyande,, T. F. D. A., Klein,, J., & Le Traon,, Y. (2018). *Extracting Statistical Graph Features for Accurate and Efficient Time Series Classification*. 21st International Conference on Extending Database Technology, pp. 1–12. http://hdl.handle.net/10993/35125

Liu,, C., & Zhou,, W.‐X. (2010). Superfamily classification of nonstationary time series based on dfa scaling exponents. Journal of Physics A: Mathematical and Theoretical, 43(49), 495005.

Liu,, C., Zhou,, W.‐X., & Yuan,, W.‐K. (2010). Statistical properties of visibility graph of energy dissipation rates in three‐dimensional fully developed turbulence. Physica A: Statistical Mechanics and its Applications, 389(13), 2675–2681.

Liu,, L. & Wang,, Z. (2018). *Encoding Temporal Markov Dynamics in Graph for Visualizing and Mining Time Series*. Workshops at the Thirty‐Second AAAI Conference on Artificial Intelligence. https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16651/15565

Long,, Y. (2013). Visibility graph network analysis of gold price time series. Physica A: Statistical Mechanics and its Applications, 392(16), 3374–3384.

Lorenz,, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.

Luque,, B., Lacasa,, L., Ballesteros,, F., & Luque,, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4), 046103.

Lyapunov, A. M. (1992). The general problem of the stability of motion. International Journal of Control, 55(3), 531–534. http://dx.doi.org/10.1080/00207179208934253.

Marwan,, N. (2008). A historical review of recurrence plots. The European Physical Journal Special Topics, 164(1), 3–12.

Marwan,, N., Donges,, J. F., Zou,, Y., Donner,, R. V., & Kurths,, J. (2009). Complex network approach for recurrence analysis of time series. Physics Letters A, 373(46), 4246–4254.

Marwan,, N., & Kurths,, J. (2002). Nonlinear analysis of bivariate data with cross recurrence plots. Physics Letters A, 302(5–6), 299–307.

Marwan,, N., Romano,, M. C., Thiel,, M., & Kurths,, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5–6), 237–329.

McCullough,, M., Sakellariou,, K., Stemler,, T., & Small,, M. (2016). Counting forbidden patterns in irregularly sampled time series. I. The effects of under‐sampling, random depletion, and timing jitter. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123103.

McCullough,, M., Small,, M., Iu,, H. H. C., & Stemler,, T. (2017). Multiscale ordinal network analysis of human cardiac dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2096), 20160292.

McCullough,, M., Small,, M., Stemler,, T., & Iu,, H. H.‐C. (2015). Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(5), 053101.

Meinshausen,, N., & Bühlmann,, P. (2006). High‐dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34(3), 1436–1462. http://dx.doi.org/10.1214/009053606000000281.

Milo,, R., Itzkovitz,, S., Kashtan,, N., Levitt,, R., Shen‐Orr,, S., Ayzenshtat,, I., … Alon,, U. (2004). Superfamilies of evolved and designed networks. Science, 303(5663), 1538–1542.

Milo,, R., Shen‐Orr,, S., Itzkovitz,, S., Kashtan,, N., Chklovskii,, D., & Alon,, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298(5594), 824–827.

Mori,, U., Mendiburu,, A., & Lozano,, J. A. (2016). Distance measures for time series in R: The tsdist package. Contributed Research Articles, 8(2), 451.

Mutua,, S., Gu,, C., & Yang,, H. (2015). Visibility graph based time series analysis. PLoS One, 10(11), e0143015.

Mutua,, S., Gu,, C., & Yang,, H. (2016). Visibility graphlet approach to chaotic time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(5), 053107.

Nakamura,, T., Tanizawa,, T., & Small,, M. (2016). Constructing networks from a dynamical system perspective for multivariate nonlinear time series. Physical Review E, 93(3), 032323.

Newman,, M. (2010). Networks: An introduction. Oxford, England: Oxford University Press.

Newman,, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

Nuñez,, A., Lacasa,, L., Valero,, E., Gómez,, J. P., & Luque,, B. (2012). Detecting series periodicity with horizontal visibility graphs. International Journal of Bifurcation and Chaos, 22(07), 1250160.

Nuñez,, A. M., Lacasa,, L., Gomez,, J. P., & Luque,, B. (2012). Visibility algorithms: A short review. In New Frontiers in Graph Theory (pp. 119–152) (Chapter 6). Rijeka: IntechOpen.

Pei,, X., Wang,, J., Deng,, B., Wei,, X., & Yu,, H. (2014). WLPVG approach to the analysis of EEG‐based functional brain network under manual acupuncture. Cognitive Neurodynamics, 8(5), 417–428.

Pesaran,, H. H., & Shin,, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17–29.

Pessa,, A. A., & Ribeiro,, H. V. (2019). Characterizing stochastic time series with ordinal networks. Physical Review E, 100(4), 042304.

Pineda,, A. M., Ramos,, F. M., Betting,, L. E., & Campanharo,, A. S. (2020). Quantile graphs for EEG‐based diagnosis of Alzheimer`s disease. PLoS One, 15(6), e0231169.

Porter,, M. A. (2018). What is…a multilayer network. *Notices of the AMS*, *65*(11). https://doi.org/10.1090/noti1746

Qian,, M.‐C., Jiang,, Z.‐Q., & Zhou,, W.‐X. (2010). Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices. Journal of Physics A: Mathematical and Theoretical, 43(33), 335002.

Ravetti,, M. G., Carpi,, L. C., Gonçalves,, B. A., Frery,, A. C., & Rosso,, O. A. (2014). Distinguishing noise from chaos: Objective versus subjective criteria using horizontal visibility graph. PLoS One, 9(9), e108004.

Ren,, H., Yuan,, Q., Semba,, S., Weng,, T., Gu,, C., & Yang,, H. (2020). Pattern interdependent network of cross‐correlation in multivariate time series. Physics Letters A, 384(30), 126781.

Ren,, W., & Jin,, N. (2020). Sequential limited penetrable visibility‐graph motifs. Nonlinear Dynamics, 99, 2399–2408.

Romano,, M. C., Thiel,, M., Kurths,, J., & von Bloh,, W. (2004). Multivariate recurrence plots. Physics Letters A, 330(3–4), 214–223.

Rössler,, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397–398.

Ruan,, Y., Donner,, R. V., Guan,, S., & Zou,, Y. (2019). Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(4), 043111.

Runge,, J., Bathiany,, S., Bollt,, E., Camps‐Valls,, G., Coumou,, D., Deyle,, E., et al. (2019). Inferring causation from time series in earth system sciences. Nature Communications, 10(1), 1–13.

Runge,, J., Nowack,, P., Kretschmer,, M., Flaxman,, S., & Sejdinovic,, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11), eaau4996.

Runge,, J., Petoukhov,, V., Donges,, J. F., Hlinka,, J., Jajcay,, N., Vejmelka,, M., … Kurths,, J. (2015). Identifying causal gateways and mediators in complex spatio‐temporal systems. Nature Communications, 6(1), 1–10.

Runge,, J., Petoukhov,, V., & Kurths,, J. (2014). Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models. Journal of Climate, 27(2), 720–739.

Sakellariou,, K., McCullough,, M., Stemler,, T., & Small,, M. (2016). Counting forbidden patterns in irregularly sampled time series. Ii. Reliability in the presence of highly irregular sampling. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123104.

Sannino,, S., Stramaglia,, S., Lacasa,, L., & Marinazzo,, D. (2017). Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting‐state networks. Network Neuroscience, 1(3), 208–221.

Shao,, Y.‐H., Gu,, G.‐F., Jiang,, Z.‐Q., Zhou,, W.‐X., & Sornette,, D. (2012). Comparing the performance of fa, dfa and dma using different synthetic long‐range correlated time series. Scientific Reports, 2, 835.

Shao,, Z.‐G. (2010). Network analysis of human heartbeat dynamics. Applied Physics Letters, 96(7), 073703.

Shirazi,, A., Jafari,, G. R., Davoudi,, J., Peinke,, J., Tabar,, M. R. R., & Sahimi,, M. (2009). Mapping stochastic processes onto complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2009(07), 1–11.

Shumway,, R. H., & Stoffer,, D. S. (2017). Time series analysis and its applications (4th ed.). Cham: Springer International Publishing.

Silva,, V. F. (2018). *Time series analysis based on complex networks*. (Msc thesis). University of Porto. https://repositorio-aberto.up.pt/handle/10216/113278

Small,, M. (2013). *Complex Networks from Time Series: Capturing Dynamics*. 2013 IEEE International Symposium on Circuits and Systems, IEEE, pp. 2509–2512. https://doi.org/10.1109/ISCAS.2013.6572389

Small,, M., Zhang,, J., & Xu,, X. (2009). *Transforming Time Series Into Complex Networks*. International Conference on Complex Sciences, Springer, (Vol. 5, pp. 2078–2089). https://doi.org/10.1007/978-3-642-02469-6_84

Strozzi,, F., Poljansek,, K., Bono,, F., Gutierrez,, E., & Zaldivar,, J. (2011). Recurrence networks: Evolution and robustness. International Journal of Bifurcation and Chaos, 21(04), 1047–1063.

Subramaniyam,, N. P., & Hyttinen,, J. (2015). Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks. Physical Review E, 91(2), 022927.

Supriya,, S., Siuly,, S., Wang,, H., Cao,, J., & Zhang,, Y. (2016). Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access, 4, 6554–6566.

Takens,, F. (1981). *Detecting Strange Attractors in Turbulence*. Dynamical systems and turbulence, Warwick 1980, Springer, pp. 366–381. http://www.crcv.ucf.edu/gauss/info/Takens.pdf

Telesca,, L., & Lovallo,, M. (2012). Analysis of seismic sequences by using the method of visibility graph. EPL (Europhysics Letters), 97(5), 1–4.

Tsonis,, A., & Swanson,, K. (2012). Review article “on the origins of decadal climate variability: A network perspective”. Nonlinear Processes in Geophysics, 19(5), 559–568.

Tumminello,, M., Lillo,, F., & Mantegna,, R. N. (2010). Correlation, hierarchies, and networks in financial markets. Journal of Economic Behavior %26 Organization, 75(1), 40–58.

Vespignani,, A. (2018). Twenty years of network science. Nature, 558, 528–529.

Wang,, J., Yang,, C., Wang,, R., Yu,, H., Cao,, Y., & Liu,, J. (2016). Functional brain networks in Alzheimer`s disease: EEG analysis based on limited penetrable visibility graph and phase space method. Physica A: Statistical Mechanics and its Applications, 460, 174–187.

Wang,, M., & Tian,, L. (2016). From time series to complex networks: The phase space coarse graining. Physica A: Statistical Mechanics and its Applications, 461, 456–468.

Wang,, M., Vilela,, A. L., Du,, R., Zhao,, L., Dong,, G., Tian,, L., & Stanley,, H. E. (2018). Exact results of the limited penetrable horizontal visibility graph associated to random time series and its application. Scientific Reports, 8(1), 5130.

Wang,, M., Xu,, H., Tian,, L., & Stanley,, H. E. (2018). Degree distributions and motif profiles of limited penetrable horizontal visibility graphs. Physica A: Statistical Mechanics and its Applications, 509, 620–634.

Wang,, R., Gao,, J., Gao,, Z., Gao,, X., & Jiang,, H. (2016). Complex network theory‐based condition recognition of electromechanical system in process industry. Science China Technological Sciences, 59(4), 604–617.

Watts,, D. J., & Strogatz,, S. H. (1998). Collective dynamics of `small‐world` networks. Nature, 393(6684), 440–442.

Wei,, W. W. (2019). Multivariate time series analysis and applications. Hoboken, NJ: John Wiley %26 Sons.

Weng,, T., Zhang,, J., Small,, M., Zheng,, R., & Hui,, P. (2017). Memory and betweenness preference in temporal networks induced from time series. Scientific Reports, 7(February), 41951.

Xiang,, R., Zhang,, J., Xu,, X.‐K., & Small,, M. (2012). Multiscale characterization of recurrence‐based phase space networks constructed from time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(1), 013107.

Xie,, W.‐J., Han,, R.‐Q., & Zhou,, W.‐X. (2019). Tetradic motif profiles of horizontal visibility graphs. Communications in Nonlinear Science and Numerical Simulation, 72, 544–551.

Xu,, P., Zhang,, R., & Deng,, Y. (2018). A novel visibility graph transformation of time series into weighted networks. Chaos, Solitons %26 Fractals, 117, 201–208.

Xu,, X., Zhang,, J., & Small,, M. (2008). Superfamily phenomena and motifs of networks induced from time series. Proceedings of the National Academy of Sciences, 105(50), 19601–19605.

Yang,, Y., Wang,, J., Yang,, H., & Mang,, J. (2009). Visibility graph approach to exchange rate series. Physica A: Statistical Mechanics and its Applications, 388(20), 4431–4437.

Yang,, Y., & Yang,, H. (2008). Complex network‐based time series analysis. Physica A: Statistical Mechanics and its Applications, 387(5–6), 1381–1386.

Yao,, C.‐Z., & Lin,, J.‐N. (2017). A visibility graph approach to cny exchange rate networks and characteristic analysis. Discrete Dynamics in Nature and Society, 2017, 1–17.

Yela,, D. F., Thalmann,, F., Nicosia,, V., Stowell,, D., & Sandler,, M. (2020). Online visibility graphs: Encoding visibility in a binary search tree. Physical Review Research, 2(2), 023069.

Zbilut,, J. P., Giuliani,, A., & Webber,, C. L., Jr. (1998). Detecting deterministic signals in exceptionally noisy environments using cross‐recurrence quantification. Physics Letters A, 246(1–2), 122–128.

Zhang,, B., Wang,, J., & Fang,, W. (2015). Volatility behavior of visibility graph emd financial time series from ising interacting system. Physica A: Statistical Mechanics and its Applications, 432, 301–314.

Zhang,, H., Xu,, D., & Wu,, Y. (2018). Predicting catastrophes of non‐autonomous networks with visibility graphs and horizontal visibility. Mechanical Systems and Signal Processing, 104, 494–502.

Zhang,, J., Luo,, X., & Small,, M. (2006). Detecting chaos in pseudoperiodic time series without embedding. Physical Review E, 73(1), 016216.

Zhang,, J., & Small,, M. (2006). Complex network from pseudoperiodic time series: Topology versus dynamics. Physical Review Letters, 96(23), 238701.

Zhang,, J., Zhou,, J., Tang,, M., Guo,, H., Small,, M., & Zou,, Y. (2017). Constructing ordinal partition transition networks from multivariate time series. Scientific Reports, 7(1), 7795.

Zhang,, R., Ashuri,, B., & Deng,, Y. (2017). A novel method for forecasting time series based on fuzzy logic and visibility graph. Advances in Data Analysis and Classification, 11(4), 759–783.

Zhang,, R., Ashuri,, B., Shyr,, Y., & Deng,, Y. (2018). Forecasting construction cost index based on visibility graph: A network approach. Physica A: Statistical Mechanics and its Applications, 493, 239–252.

Zhang,, R., Zou,, Y., Zhou,, J., Gao,, Z.‐K., & Guan,, S. (2017). Visibility graph analysis for re‐sampled time series from auto‐regressive stochastic processes. Communications in Nonlinear Science and Numerical Simulation, 42, 396–403.

Zhao,, Y., Peng,, X., & Small,, M. (2020). Reciprocal characterization from multivariate time series to multilayer complex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(1), 013137.

Zhou,, T.‐T., Jin,, N.‐D., Gao,, Z.‐K., & Luo,, Y.‐B. (2012). Limited penetrable visibility graph for establishing complex network from time series. Acta Physica Sinica, 61(3), 030506.

Zhu,, G., Li,, Y., & Wen,, P. P. (2014). Analysis and classification of sleep stages based on difference visibility graphs from a single‐channel EEG signal. IEEE Journal of Biomedical and Health Informatics, 18(6), 1813–1821.

Zhuang,, E., Small,, M., & Feng,, G. (2014). Time series analysis of the developed financial markets` integration using visibility graphs. Physica A: Statistical Mechanics and its Applications, 410, 483–495.

Zou,, Y., Donner,, R. V., Marwan,, N., Donges,, J. F., & Kurths,, J. (2019). Complex network approaches to nonlinear time series analysis. Physics Reports, 787, 1–97.

Zou,, Y., Heitzig,, J., Donner,, R. V., Donges,, J. F., Farmer,, J. D., Meucci,, R., … Kurths,, J. (2012). Power‐laws in recurrence networks from dynamical systems. EPL (Europhysics Letters), 98(4), 48001.

Zunino,, L., Pérez,, D., Martín,, M., Plastino,, A., Garavaglia,, M., & Rosso,, O. (2007). Characterization of gaussian self‐similar stochastic processes using wavelet‐based informational tools. Physical Review E, 75(2), 021115.